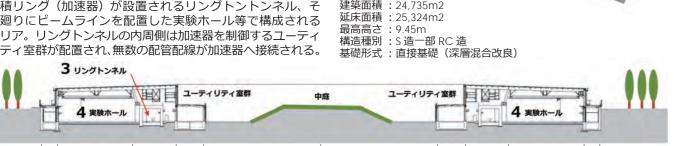
NanoTerasu

3GeV 高輝度放射光施設

3GeV Synchrotron Radiation Facility NanoTerasu

放射光施設概要 ―様々な要求性能―


近隣、環境への影響を極力低減させた計画 本施設の構成としては、長さ 110mの線形加速器を収容する 【ライナック棟】と、直径約 172mの円形状加速器を収容する 【蓄積リング棟】(東京ドームとほぼ同じサイズ)で構成される。 支持地盤は現況より10mほど低い位置にほぼ平坦にあった為、 掘削土量バランス等も鑑み、5m掘削し残りの 5mは地盤改良 を行う計画とした。また掘削土量削減のため、棟の中央は残 す計画とした。これらにより周辺の木々よりも低く、近隣へ

【ライナック棟】 線形加速器が設置されるライナックトンネルが配置されるエ

の影響も最小限に抑えた計画になっている。

リア。エントランスや管理諸室、見学ホール等など、事務管 理機能エリアも置かれている。

蓄積リング(加速器)が設置されるリングトントンネル、そ の廻りにビームラインを配置した実験ホール等で構成される エリア。リングトンネルの内周側は加速器を制御するユーティ リティ室群が配置され、無数の配管配線が加速器へ接続される。

エントランス

1 ライナックトンネル 電子を加速する直線加速器 (ライナック) を収納する、 厚さ約 1mの RC トンネル。 放射線の遮蔽性能、床レベルの変動の抑制、振動への

> 2 クライストロン ギャラリー

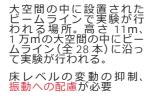
実験ホール照明計画

実験ホールはその環境下のままで実験は行われることは無く、

実際には実験ホールの各ビームラインに設置された装置や実 験ハッチ内で行われる。また作業範囲には適宜タスク照明が

そのため、照度ではなく均整度と明るさ感を重視し、窓の無

い閉鎖的な環境でも不安にならないように配慮した。

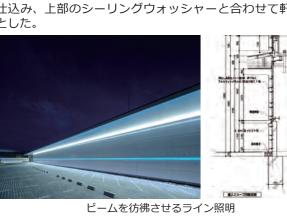

高効率かつ象徴的な照明計画

4 実験ホール

3 リングトンネル

計画地 : 宮城県仙台市

: 地下 1 階地上 2 階



トンネル内の照明 運転中の加速器トンネル(ライナックトンネル、リングトン ネル) においては、非常に強力な放射線が放出されている。 放射線の影響により電子機器(半導体)に故障が起こると言 われており、加速器トンネル内の電気設備(主に照明器具) についての機器選定や取付方法に配慮した。

トンネル内照明電源ユニット

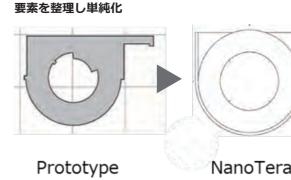
エントランスへの外構アプローチ照明計画 エキスパンションジョイント部の壁面スリットに間接照明を 仕込み、上部のシーリングウォッシャーと合わせて軒下照明

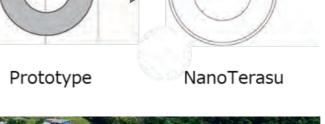
酷な放射線環境下における照明計画

ライナックトンネル上部

原子力施設等を対象とした対放射線性器具も開発されていた が、非常に高価であり、メーカー標準品で実用に耐えうる照 明器具の採用を目指し、研究者協力の下、SPring-8 の放射線 管理化において実験も行った。

電源装置が照明器具本体と分離している電源装置別置型の器 具を採用。加速器トンネル上部に照明器具配線用の開口を設 けることで、電源装置とランプ部をトンネルの外部と内部に 分けて設置を可能とした。以上により、放射線管理下の加速 器トンネル内においても、市販の LED 照明器具を利用するこ とを実現した。


実験ホール 一性能発揮追求の結晶-


設の特徴をアイコン化

ユニークな建屋のその形状は、加速器と呼ばれる放射光を発 その明快さを崩さぬよう、外装計画は装飾や要素を極力減ら 生させる装置のレイアウトに由来している。また建屋に求め られる性能も、全て装置の性能を発揮するためであり、つま り建屋自体が巨大な実験装置とも言える。

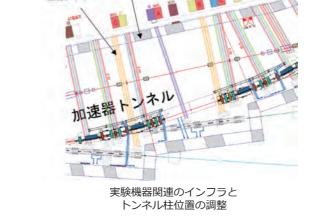
し、放射光施設の特徴をストレートに表したようなアイコニッ クな外観とすることで、東北復興のシンボルとなるような施 設を目指した。 要素を整理し単純化

設備・構造・装置のインテグレーション

経済性とフレキシビリティの両立

実験ホールの半径方向は約 40m の長大スパンとなるため、建 屋内周側に配置されるリングトンネル上部に柱を設けること で屋根梁を短スパン化した。これにより長大スパンを実現し ながらも経済性に配慮しつつ、実験ホールの使い勝手を損な わない無柱空間を実現した。

設備・構造・装置の最適解

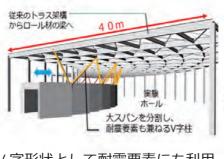

リングトンネル上部に設ける柱位置は建屋のスパン割と合致 しないことから、柱を V 字状に設けることで、屋根鉄骨のス パン割と整合させるとともに耐震要素を兼用させ、耐震に対 しても合理的な構造計画とした。 これにより、内周側(ユーティリティスペース)側へのブレー ス設置を回避し、自由な設備計画を可能とするなど、フレキ

シビリティの高い建築計画に貢献した。 リングトンネルが地震力を負担する計画としたため、トンネ ルもルート 3 設計となり、柱梁架構とする必要があった。-方で実験機器関連のインフラは不規則にトンセルを貫くため、

建物の最大長さが約 250m にも及ぶため、温度変化による建 屋の伸縮と内外装材の追従に配慮し、構造上は2棟に分け EXP.J を設ける計画とした。 一方、蓄積リング棟のリング状の架構は外周長が約 540m に も及ぶが、ドーナツ状の形状であることに着目し、放射方向

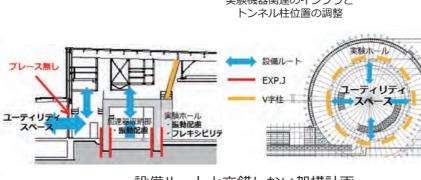
に変形することで温度変化による建屋の伸縮を吸収可能であ

ることを確認した上で、EXP.J を設けない計画とした。



斜め柱はトンネル角 (ラチェット部)

を狙い、屋根レベルは狙い点を同一円


1111111///

トンネル上部 V字柱

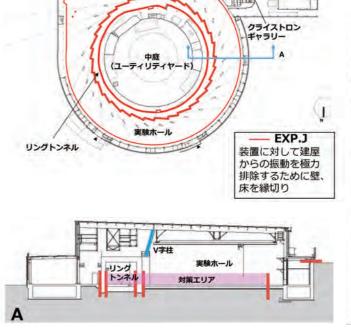
一つづつ構造と装置で最適解を追求した。

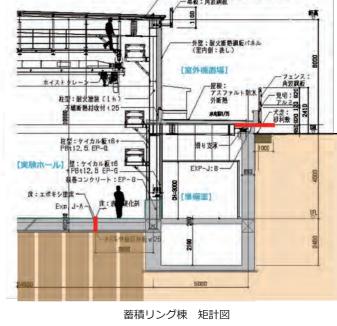
V 字形状として耐震要素にも利用

設備ルートと交錯しない架構計画

辰動対策のデザイン

そのものが巨大な実験装置といえるこの建築では、通常は問 リングトンネル部は、屋根梁のスパン減少を目的としてトン それは振動により電子の軌道が狂うと、放射光の性能が発揮 の振動がトンネル壁に伝わることを考慮 されないためである。しかし、建屋は昼間の日射や夜間の冷し、トンネルの壁と内外の床を縁切りした。 床に対しては、極力鉛直方向の不同沈下や振動が生じない性 平レベルを保つ計画とした。 能が求められた。

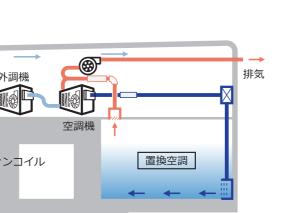

一筆書きの床 EXP.J 計画 送風機・ポンプ等の設備機器類の振動、実験ホール天井面に 設置されるクレーンの振動や外部からの交通振動に対して、 トンネル・実験ホールの床への伝搬を極力排除する目的で、 トンネル・実験ホール床を建屋基礎から縁切りする計画とした。

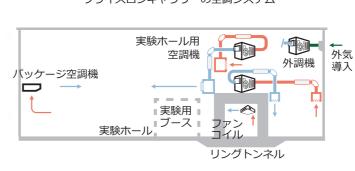

ライナックトンネル

題にならない微小な変形や微振動も防ぐ性能が要求される。 ネル上部で V 字柱を支持することから、屋根面のクレーン等

却などの温度変動で変形し、また送風機やポンプなどによりまた、トンネル部・実験ホール部は、柱状の地盤改良を採用し、 負担面積がほぼ均一になるように配置することで、床面の水

本建物は 1 階床レベルを表層地盤より約 4.5m 下げ半地下と する計画であり、建物が常時土圧(土による圧力)を受ける ことで建屋が変形するのを避けるため、土圧を受ける壁(擁壁) と建屋を縁切りする計画とした。




光速レベルの電子を制御する

①装置の温度環境を整える

ほぼ光速まで加速されてリングを周回する電子は、電磁石で「電 子をキックして」軟 X 線を発生させている。このようにほぼ 光速の電子を制御するためには、加速器装置の熱膨張・熱収縮 を徹底的に抑制する必要があり、具体的には装置冷却水の温度 変化を ±0.2℃以内に抑え、クライストロンギャラリー等重要 室の室内温度も ±2.0℃以内に抑えている。加速器装置の一部 であるクライストロンを設置するギャラリーに置換空調システ ムを導入し、機器発熱を効率的に冷却している他、トンネルと 外壁の間に緩衝スペース、さらに設備スペースを兼ねる天井内 スペースをあえて設け、ペリメータ熱負荷処理用緩衝空間を創 出し、外皮からの熱負荷を効率的に除去している。

クライスロンギャラリーの空調システム

実験ホールの空調システム

も重大な影響を受ける。微振動を極限まで排除するため、機 器設置エリアの床と、振動源となる外壁・屋根部を支持する

②電子の周囲環境を整える

柱が接続されているエリア、空調機類が設置されている床工 リアを振動伝達しないゴムのエキスパンションジョイントで 縁切りしている。またトンネル上部の冷却水配管にフレキシ ブルジョイントを設置して冷却水からの振動も抑制した上で、 さらに空調ダクトに消音ダクト、消音エルボを設置して空気 からの振動も抑制している。

ほぼ光速で運動する電子は人間には感じられない微振動から

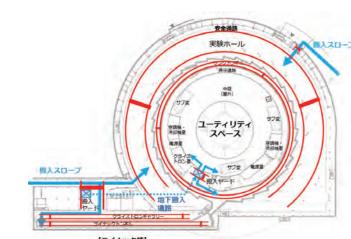
クライストロンギャラリー

新陳代謝のデザイン

大型の装置の持ち込みに対応 実験ホールに設置可能なビームラインは合計 28 本だが、当初は 10 本のみの

実装となる。また実験ホール内は各ビームライン毎に利用者が大型の装置等 を持ち込んで実験できる計画となっている。このように本施設は供用開始後 も増設・更新などの新陳代謝が常に行われる計画となっている

更新時への研究者への配慮


楊重計画

このような更新の妨げにならぬよう、大型機器を実験ホールに搬入できる経 路を2か所設け、実験ホール最外周部は 2.5mの安全通路、その外側に準備室 を配置することで、安全に更新が行えるように配慮した。

また大型の搬入物を楊重する為、搬入ヤードにはホイストクレーンを設置し、 さらに実験ホールやリングトンネルは円周方向に旋回するクレーンを設ける


一方、周囲をリングトンネルで囲われている内周側のユーティリティスペー

スへは、地下搬入通路を設けて機器更新等に対応できる計画としている。

01審美感【色や形・素材などが美しいと感じられること。】 02調和性【周辺環境・建築計画と一体化し融合していること。】 3独創性【デザインに独創性があること。】 04象徴性【設計者のデザイン意図が象徴的に表現されていること。】 05完成度【美しさや調和の面からデザインの完成度が高いこと。】 07効率性【効率性が高いこと。】 08利便性【使いやすく目的に合っていること。】 09安全性【安全で危険がなく健康にも配慮されていること。】 10先導性【機能面で新たなデザインの方向性を示すこと。】 15先進性 11環境負荷【エネルギー消費を抑制し環境汚染、地球温暖化防止に配慮していること。】 12資源消費【資源消費を抑制し、再生材及び再利用可能材を使用していること。】 13地域環境性【地域環境の向上に寄与し、騒音・振動など負の影響を抑制していること。】 14ユニバーサル性【デザインや機能が年齢や性別・国籍を越えて通用すること。】 12資源消費 10先導性 15先進性【社会的・文化的価値を創出する先進性が認められるごと。】 11環境負荷 16イニシャルコスト【機能とコストのパランスが取れていること。】

18維持管理性【維持管理が容易であること。】

19耐久性【耐久性・更新性に考慮されていること。】

■ A.感性軸(造形) ■ B.機能軸(技術)